Chapter X: The Documentation

Introduction

As any software engineer worth their salt will tell you, good documentation makes a huge difference in the learning curve required to master any new tool. It is a part of a product which is often dismissed as unimportant or secondary to the quality or feature set of a software product, but this is a foolhardy mistake. It is as important, some may say even more important, than the product itself.

I have spent many years looking at computer software manuals, and through my various professional positions I have worked with many forms and variants of computer documentation. To date, I have encountered no form of printed documentation which surpasses the RISC-OS 2 Programmer’s Reference Manuals as produced by Acorn Computers Ltd. in 1989 (ISBN: 1 85250 061 1).

These manuals were characterised by spring-bound pages, lots of whitespace for errata corrections and annotations and ingenious formatting and layout to aid quick indexing by the human hand. I have borrowed much from these manuals which were considerably ahead of their time.

However, this documentation was produced over a decade ago now and much has moved on, especially in the area of online documentation. It was my great wish that the manuals for this project also reflect this new era of the internet, online manuals and the ability to refer to documentation on the same screen being used to develop your software.

Hence I have written the manuals in HTML which is not only easy to use electronically, it can also be printed out with the subsequent addition of usefulness only allowed through having it in hard copy.

· Features of the project manuals

· Completely written in compliant HTML v3.0

· Renders correctly in all HTML v3.0 compliant web browsers (eg; Microsoft Internet Explorer v2.0 and after). Netscape’s Navigator web browser introduces cosmetic rendering glitches.

· Automatically reformats itself without breakage according to page size. This allows the pages to be placed anywhere on screen so they do not annoy the user.

· Text can be made bigger for visually impaired users without loss or breakage of formatting.

· Use of field entries creates consistency and ease of lookup within each API entry

[image: image2.png]2 D:\Documents and Settings\ned)Desktop'Excepts:htm - Microsoft Internet Explorer E -1ol x|
I e - |

| oo s - @ @) 4| Qesch Crwvorees (Bristory | Ehe b A -
I

‘address [&] b:{Documents and SettingsinediDesktoplExcepts.html =] @oo ||unks 7

Finally, the ADCS stack li register (=R 10) s set to current stack less current stack size. This 4]
should catch any massive overflows of stack space, but as the routine cannot know the base of the
stack for efficiency reasons, it may allow for corruption of memory. Besides, the APCS stack

extending routine could not extend a supervisor stack so enabling stack checking on handler code is
wastefil

Example handler code

APCSC ARM assembler
extern HALError *Handler (int param) EXPORT ExampleHandler ...
f Exanp leHandlex
...perforn handling code ... STHFD R131,(R1-R3, ..., R4}
(Enorhandied revuen (RiiErzor " perzotm handiing |
o 0: cade ...
if (handled) return (HALError) CHP Rx, #nothandled
HOVEQ RO, 40
if (error] return errblk; CHP Rx, #handled
3 HOVEQ RO, #1
CHP Rx, ferror
LDREQ RO, =errorbliptr

LDNFD R131,(RL-R3, ..., PC}

ExceptH Initialise -/

[&1pore

[T [corputer 7

Details

[image: image3.png]| Fie Edt Vew Favortes Took Hep []
| ok - > - @ A | @search GigFavorites »|
| deress [pripocuments and settingsipedipesttoplex] @G0 | |uinks)

Finally, the ADCS stack bt register
(sI=R10) i set to current stack less current
stack size. This should catch any massive
overflows of stack space, but as the routine
cannot know the base of the stack for
efficiency reasons, it may allow for
cormuption of memory. Besides, the APCS
stack extending rovtine could not extend a
supervisor stack o enabling stack checking
on handler code is wasteful

Example handler code

APCS € ARM assembler
extern EZPORT
HiLError ExeupleHandler ...
*Handler (int | ExempleHandler
paran) STHFD R13t,
« (R1-R3, ..., R1%)

.. .perzom
handling perforn handling
code ... code ...

e e
(nothandled) | Rx,#nothandled
return noveo
(HALError *) | RO,#0
0: e

iz Rx, handled
{handled) MOVEQ
return RO, #1
(HALError *) CcHP
1: Rx, #error

if (exror) LDREQ
return RO, =errorhliptr
errblic; LowFD
) RI3L, (RI-RS, ...,

rCy

ExcentH Initialise -/
[&1bore [[(S computer 7

The manuals are based on judicious use of HTML tables to allow auto-formatting of the page according to its size and layout to still allow its usefulness. For example, figure A below shows a manual page at A4 width – figure B shows the same page considerably thinner. As you will notice, the manual content remains very readable and auto reformatted appropriately.

Each page is also laid out in a special way:

[image: image1.png]Purpose

Entry

Exit

Interrupts

Processor Mode
Staticity

Use

Notes

ExceptH_RemoveHandler

Removes a handler for a particlar vector

RO = ARM vector number
R1 = address of handler

RO =Dull if no error occurred, pointer to HALError otherwise

RQis disabled
FIQis unchanged

SVC32 if User32 on entry, ofherwise unchanged
Alters zero page memory only

‘The ARM vector number is determined by ResetV=0, Undef\=1, SWIV=2, PAbortV/=3,
DAbortV=4, IRQV=6, FIQV=7 - the same way the ARM processor has them. There are macros
eaquivalent to these names defined in BoardDefines for your convenience.

‘The removal of a hander at the top of the it wil incur greater interrupt latency than one a the end
of the list as the lst onwards from the handler's entry rust be copied upwards

Mone

Name of API is at right hand side of page to aid quick finding (one scrolls the window or leafs through pages on their right)

For each API listing, there are these field entries in the left hand column. This aids the programmer in finding the information about this API quickly and consistently

This entry shows what happens to the interrupt status during operation. If IRQ’s or FIQ’s are disabled, this indicates a possible interrupt latency for the duration of this call

This entry shows what processor mode this operation runs within. Context switching may be disabled for non User32 mode code on some operating systems – this may add task swap latency or otherwise affect operations

This entry shows what memory is altered by this operation. This partly indicates the reentrancy ability of this operation – if no memory is altered, this call is fully reentrant. If it only alters zero-page memory, it may be called at times when DRAM is disabled or not available.

