What I have done since the 22nd November:





Found a clean Windows PC during the Christmas break at my father's workplace onto which I installed the development tools


Implemented AT91 ARMCache, ARMCore and ARMMMU modules


Implemented AT91 timer control module and hence a 100Hz interrupt timer


Implemented various bits of code to workaround Angel's intrusive presence (eg; prevent U/COS performing a context switch on Angel)


Reworked interrupt handling to use the AT91 intelligent interrupt controller (necessary as Angel uses it) and also the U/COS context switcher as it makes assumptions about how interrupts are handled





Successes:


Through having access to a clean PC, I was able to install the ARM SDT v2.5 evaluation toolkit and hence communicate with my Atmel EB01 development board. This was the first time I was able to run my project on real hardware


U/COS example1.c now runs partly on the Atmel board





Recent problems:


Angel is not suitable for debugging RTOS's as both attempt to task switch each other (use of Demon or EmbeddedICE is the preferred choice for RTOS development). There is now some nasty kludge code which allows coexistence at the expense of timer interrupt latency


Angel, being a program like our RTOS, requires exclusive use of various address ranges including the processor vectors. Hence one must relocate the code elsewhere and "patch" the vectors to call a piece of code determining whether to call the RTOS or Angel.


I only had two full days of development time in my father's workplace due to Y2K concerns (they brought many technicians in for the first week of 2000)


U/COS example1.c no longer runs within the ARMulator. It would seem I have broken something





Possible solutions:


More development time!








Niall Douglas


30th December 1999





